Comparative Efficacy of various Interval Mass Treatment on *Ascaris lumbricoides* Infection in Korea

Byong-Seol Seo, Seung-Yull Cho, Jong-Yil Chai and Sung-Tae Hong

Department of Parasitology and Institute of Endemic Diseases, College of Medicine, Seoul National University

INTRODUCTION

What we expect in mass chemotherapy against *Ascaris lumbricoides* infection is not only the temporary decrease of infection rate but also the gradual lowering of reinfection in a community. However, many authors have experienced the rapid return of reinfection rate up to the pre-treatment level after single chemotherapy even though they had tried with the most effective anthelmintics (Mackay et al., 1979; Jancoes et al., 1979). That phenomenon is now well interpreted as a result of rapid reinfection which is one of the epidemiological characteristics in *Ascaris lumbricoides* infection. Therefore, by repeating the mass chemotherapy, the reduction in total sum of fertilized egg production is expected as well as in the gradual decrease of reinfection.

In this respect, the interval between chemotherapies is of primary concern to those who are engaged in the control of ascariasis. Unfortunately, however, there have been many different reports in applying mass chemotherapy to the endemic population especially in regards to its frequency employed in a year.

In Korea, the control activity of *Ascaris* infection have been performed by 6-month interval mass chemotherapy on schoolchildren group. And much appreciable result was obtained, since the ova positive rate, 55.4% in 1969 dramatically dropped to 19.4% in 1978 (the Korean Association for Parasite Eradication, 1980). Morishita (1972) was of opinion that the interval should be variable according to infection rate of endemic area concerned. Komiya (1962) proposed 4-month interval mass chemotherapy where the infection rate was 50 ~60% in Japan. Cabrera et al. (1975) reported good results by 3-month interval where the infection rate was higher, 84.4% in the Philippines. Arfass and Gharidian (1977) were disappointed by the single chemotherapy per anuum in central Iran (87 ~95% infection rate), and proposed 2~3 month interval mass chemotherapy.

Considering various opinions on the proper mass chemotherapy interval, it is necessary to have informations on the comparative effect of various interval mass chemotherapy on later infection of *Ascaris* in Korean environment.

This study was designed and undertaken to figure out the effect of various schemes of mass chemotherapy on the egg and worm positive rates and worm burden per population. It was expected that the result of this study would afford the sound background for the policy making on the mass chemotherapy interval.

* This study was supported in part by the Grants (1978~1979) from the Asian Parasite Control Organization (APCO).
MATERIALS AND METHODS

1. Subjected population
Nine villages of Hwasung Gun, Kyunggi Do, Korea were selected for this study. Each village consisted of about 100~140 population of whole age and either sex. All of the inhabitants residing in each village were included in the list of mass treatment. New immigrants, if any, during the course of study were immediately registered and included in the next treatment.

2. Treatment of the inhabitant
Inhabitants in Group A were began to be treated in June 1977, and repeated until December 1978 bimonthly for 10 times. To the 6 villages in Group B, treatments were begun in April-September 1977 respectively in each month, and repeated biannually until April-September 1979 for 5 times. Inhabitants in Group C were treated firstly in April 1977, second time in April 1978 (12-month interval), third time in January 1979 (9-month interval). Then, the group C were treated every 4 months until May 1980 for 4 times.

All of the inhabitants in each village were tried to be subjected in every treatment. Inevitably, there have been some drop-outs, such as pregnant women, reluctant individuals and absentees. The drug used was pyrantel pamoate in dose of 10mg/kg throughout the study.

3. Evaluation of the efficacy of mass treatment
The efficacy of various schemes of interval mass treatment was evaluated by observing the transition pattern of endemicity revealed by both egg/worm positive rate and worm burdens per case.

As described by Seo et Chai (1980), examination for eggs and worms was performed after collection of whole-day stool specimens for 2 consecutive days from each case immediately after each treatment. Egg examination was done on one sample in each case by cellophane thick smear technique to the firstly passed specimen after treatment. In worm examination, the expelled worm(s) from each case was counted each time.

All of the villagers were included in each follow-up. The drop-outs in the former treatment were also included because they were few in number. The bias in efficacy evaluation was neglected.

RESULTS

The pre-treatment infection status with A. lumbricoides was 32.5~42.3% in egg positive rate and 33.8~46.2% in worm positive rate according to groups, as shown in Table 1-4. The difference between groups was not significant from the epidemiological point of view. The mean values of worm burden were much more variable according to groups, 1.6~4.2 per infected case and 0.61~1.42 per population.

Table 1 shows the result of repeated mass chemotherapy in Group A. Both the egg and worm positive rates at pre-treatment level, 37.8 and 38.7% were Lower after the first treatment. Egg positive cases in successive follow-up examinations were not over 6% until the 10th treatment. But the worm positive rate was up to 12.7% in December 1977 and 10.9% in June 1978, which was seasonal fluctuation in Korea (Seo et al., 1979). Mean worm burden per infected case and per population were 1.6 and 0.16 respectively at pretreatment, by far decreased after treatment. Most of the reinfected cases had one worm throughout the follow-up period in this group.

In 4-month interval group, the egg and worm positive rates were 32.5 and 33.8% respectively at pre-treatment (Table 2). The egg positive rates were then Lower to the one third level at the second and third interval treatments;
Table 1. Infection status of *Ascaris lumbricoides* revealed by egg and worm examinations in 2-month interval treatment group.

<table>
<thead>
<tr>
<th>Sequent. No. of treatment</th>
<th>Date</th>
<th>No. of population</th>
<th>No. treated</th>
<th>Egg examination</th>
<th>Worm examination</th>
<th>Mean No. of worm per infected per population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. examined</td>
<td>No. positive (%)</td>
<td>No. examined</td>
</tr>
<tr>
<td>1</td>
<td>Jun. 1977</td>
<td>134</td>
<td>113</td>
<td>90</td>
<td>34 (37.8)</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>Aug. 1977</td>
<td>136</td>
<td>107</td>
<td>87</td>
<td>2 (2.3)</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Oct. 1977</td>
<td>135</td>
<td>101</td>
<td>85</td>
<td>1 (1.2)</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>Dec. 1977</td>
<td>138</td>
<td>101</td>
<td>91</td>
<td>1 (1.1)</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>Feb. 1978</td>
<td>133</td>
<td>102</td>
<td>72</td>
<td>0 (0.0)</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>Apr. 1978</td>
<td>123</td>
<td>92</td>
<td>68</td>
<td>2 (2.9)</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>Jun. 1978</td>
<td>120</td>
<td>88</td>
<td>49</td>
<td>3 (6.1)</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>Aug. 1978</td>
<td>120</td>
<td>92</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>Oct. 1978</td>
<td>120</td>
<td>92</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>Dec. 1978</td>
<td>120</td>
<td>95</td>
<td>61</td>
<td>3 (4.9)</td>
<td>39</td>
</tr>
</tbody>
</table>

Total 1,279 983 603 46 412 40 49

* Identical group as Group C reported by Seo et Chai (1980)

** Drop-outs in the former treatment were included in efficacy evaluation of the scheme, because they were few in number in each follow-up.

Table 2. Infection status of *Ascaris lumbricoides* revealed by egg and worm examinations in 4-month interval treatment group.

<table>
<thead>
<tr>
<th>Sequent. No. of treatment</th>
<th>Date</th>
<th>No. of population</th>
<th>No. treated</th>
<th>Egg examination</th>
<th>Worm examination</th>
<th>Mean No. of worms per infected per population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. examined</td>
<td>No. positive (%)</td>
<td>No. examined</td>
</tr>
<tr>
<td>1</td>
<td>Jan. 1979*</td>
<td>242</td>
<td>208</td>
<td>120</td>
<td>39 (32.5)</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>May 1979</td>
<td>240</td>
<td>202</td>
<td>106</td>
<td>9 (8.5)</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>Sep. 1979</td>
<td>246</td>
<td>199</td>
<td>108</td>
<td>12 (12.2)</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Jan. 1980</td>
<td>238</td>
<td>194</td>
<td>94</td>
<td>2 (2.1)</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>May 1980</td>
<td>236</td>
<td>199</td>
<td>105</td>
<td>9 (8.6)</td>
<td>75</td>
</tr>
</tbody>
</table>

Total 1,202 1,002 533 71 335 51 254

* Same as the third treatment in Table 4.

** High values were due to one highly risked family, whose worm burdens were unusually high, 7-34 per case.

i.e., 8.5 and 12.2% respectively. Further lowering was observed at the fourth treatment. The changing pattern of worm positive rates was similar with that of egg rates. There was a high risked family to *Ascaris* infection in this group. All of the family members were infected 7-34 worms in each follow-up. Therefore, the worm burden data fluctuated in each time.

In 6-month interval group, the pre-treatment egg and worm positive rates were 42.3 and 46.2% in average as presented in Table 3. Egg positive rate was decreased to 16.9 and 17.5% respectively at the first and second follow-up examinations. The rate was decreased further to 11.3% at the third follow-up and to 8.2% at the fourth. Worm positive rates decre-
Table 3. Infection status of *Ascaris lumbricoides* revealed by egg and worm examination in 6-month interval treatment group

<table>
<thead>
<tr>
<th>Sequent. No. of treatment</th>
<th>Date</th>
<th>No. of population</th>
<th>No. treated</th>
<th>Egg examination</th>
<th>Worm examination</th>
<th>Mean No. of worm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. examined</td>
<td>No. positive (%)</td>
<td>No. examined</td>
</tr>
<tr>
<td>1</td>
<td>Apr.-Sep. 1977</td>
<td>746</td>
<td>612</td>
<td>562</td>
<td>238(42.3)</td>
<td>370</td>
</tr>
<tr>
<td>2</td>
<td>Oct.-Mar. 1978</td>
<td>740</td>
<td>599</td>
<td>531</td>
<td>90(16.9)</td>
<td>393</td>
</tr>
<tr>
<td>3</td>
<td>Apr.-Sep. 1978</td>
<td>738</td>
<td>571</td>
<td>469</td>
<td>82(17.5)</td>
<td>291</td>
</tr>
<tr>
<td>4</td>
<td>Oct.-Mar. 1979</td>
<td>735</td>
<td>598</td>
<td>522</td>
<td>59(11.3)</td>
<td>303</td>
</tr>
<tr>
<td>5</td>
<td>Apr.-Sep. 1979</td>
<td>710</td>
<td>560</td>
<td>439</td>
<td>36(8.2)</td>
<td>302</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3,669</td>
<td>2,940</td>
<td>2,523</td>
<td>505</td>
<td>1,659</td>
</tr>
</tbody>
</table>

Table 4. Infection status of *Ascaris lumbricoides* revealed by egg and worm examination in 12-month interval treatment group

<table>
<thead>
<tr>
<th>Sequent. No. of treatment</th>
<th>Date</th>
<th>No. of population</th>
<th>No. treated</th>
<th>Egg examination</th>
<th>Worm examination</th>
<th>Mean No. of worm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No. examined</td>
<td>No. positive (%)</td>
<td>No. examined</td>
</tr>
<tr>
<td>1</td>
<td>Apr. 1977</td>
<td>248</td>
<td>212</td>
<td>122</td>
<td>43(35.2)</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>Apr. 1978</td>
<td>238</td>
<td>201</td>
<td>140</td>
<td>51(36.4)</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>Jan. 1979</td>
<td>242</td>
<td>208</td>
<td>120</td>
<td>39(32.5)</td>
<td>74</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>728</td>
<td>621</td>
<td>382</td>
<td>133</td>
<td>244</td>
</tr>
</tbody>
</table>

Fig. 1. Comparative efficacy of various interval mass chemotherapy revealed by egg positive rate. The egg positive rate decreased similarly with that of eggs. Mean value of worm burden per case was 2.7 at pre-treatment and decreased gradually to 1.2 at the last follow-up and the mean value of worm burden per population decreased similarly, from 1.25 to 0.15.

Fig. 2. Mean worm burden per population during the course of various interval mass treatment.
Table 4 shows the efficacy of mass chemotherapy by 12-month and 9-month intervals. All of the indices, egg and worm positive rates, and mean values of worm burden/infected and worm burden/population were changed little. The worms collected in January 1979 were even more than those of the first treatment.

The changing patterns of the egg positive rate are plotted in Fig. 1 by schemes of mass treatment. And Fig. 2 shows the same patterns of the index, worm burden/population in every scheme. These two figures present schematic idea on the effect of various interval mass therapy on two indices of *Ascaris* infection status. The shorter the interval between chemotherapies, the better the results in prevalence. From these figures it is inferred that the *Ascaris* reinfection increased proportionately with the lapse of time up to 1 year though there should be monthly differences in increasing rates.

DISCUSSION

Pyrantel pamoate was highly effective in treatment of *A. lumbricoides* infection in dose of 10mg/kg. Excellent results were reported both in egg negative conversion (=cure) and egg reduction rate (Desowitz *et al.*, 1970; Seo *et al.*, 1972). Immediately after each treatment, most of inhabitants have been almost free from infection. Therefore the prevalence rates obtained in consecutive follow-ups represent the accumulated incidences of reinfection of relevant interval between pyrantel treatments.

Although the people were treated, there have been persistent reinfection until the end of follow-up in all surveyed villages. The average monthly reinfection rate was calculated as 1.3~3.3% by egg positive rate and 2.4~3.6% by worm positive rate respectively in each group.

In 12-month interval group, the prevalence rate one year after the first mass chemotherapy was almost same as that of pre-treatment. In addition, the mean burden of worm did not decrease to any extent. This result was similar with that reported by Arfaa and Ghadirian (1977) in central Iran, though there was a significant difference of endemicity between their country and Korea. Egg positive rate and mean worm burden per infected case were 87~95% and 16.0~34.8 in Iran, comparing with 33~42% and 1.6~4.2 respectively in Korea. However, returning pattern of the prevalence rate to pre-treatment level showed exactly same. These results suggest that the prevalence rate of *Ascaris* in a community attain its equilibrium within a year in both countries.

In case of biannual, triannual and six-times-in-a-year schemes, the prevalence rates were almost proportionately decreased according to the length of interval between treatments.

In addition, during 2 years after the initial treatment, the rates showed the tendency of further lowering. The mean value of worm burden, especially per population also decreased by these schemes.

It takes time to control *Ascaris* infection when attempted only with chemotherapy. As Seo *et* Chai (1980) showed in their long-term 2-month interval mass chemotherapy on *Ascaris*, it took at least 30 months or 2 over-winterings to control reinfection in a small community in Korea. The longer the interval than 2 months is, it is expected that it takes longer period of time to control because more amount of fertilized egg production should be allowed.

As a measure of controlling *Ascaris* reinfection, 12-month interval seems by no means meaningful. Its only merit is temporary reduction of worm burden in a population. Unless the sanitary condition is improved in the relevant community this kind of control measure should be repeated endlessly without any lowering effect on overall prevalence rate. Present results
confirm the necessity of at least biannual mass chemotherapy as a control measure. The favourable results of more repetition do not necessarily mean that the agency responsible for control of ascariasis should select that kind of luxurious scheme in developing countries. The decision depends on their own social demand of control.

SUMMARY

To observe the effect of various interval mass treatment on *Ascaris* ova and worm positive rates and worm burden per population, 2-month, 4-month, 6-month and 12-month interval schemes were designed and applied. All of inhabitants in nine villages of Hwasung Gun, Kyunggi Do, Korea were treated from April 1977 to May 1980.

Each village consisted of 100~140 people, however, there had been 20~40 drop-outs in every treatment. Pyrantel pamoate was used in dose of 10mg/kg. Evaluation of schemes was made by examinations both for eggs and for expelled worms. The drop-outs in former treatment was included because they were few in number. The results obtained were summarized as follows:

1. The pre-treatment infection status of *A. lumbricoides* was not significantly different between Groups; 32.5~42.2% and 33.8~46.2% in egg and worm positive rates respectively. The mean worm burdens were in range, 1.6~4.2 per infected and 0.61~1.42 per population.

2. Twelve-month interval treatment was by no means meaningful to be adopted as a strategy of *Ascaris* control because egg and worm positive rates and mean worm burden were returned to pretreatment level.

3. The shorter the treatment interval was, the lower the egg/worm positive rates and worm burden were. By repeating biannual, triannual and six-times-in-a-year treatments, the indices of prevalence showed the tendency of further lowering during later 2 years of follow-up.

If the mass chemotherapy is adopted as a method of controlling ascariasis in a community, it should be repeated more than two times in a year to expect the gradual lowering of reinfection.

ACKNOWLEDGEMENT

The authors would like to express their many thanks to Mr. Jae-Lip Kim who was always willing to cooperate the performing field and laboratory works. The kind guidances in home visiting by all members of the Family Health Centre, Hwasung Gun, Kyunggi Do, Korea are highly appreciated.

REFERENCES

Komiy, Y. (1962) cited from Morishita(1972)

Korea Association for Parasite Eradication(1980) The evaluation of mass control project on students against *Ascaris* infection(A monograph in Korean)

==国文抄録==

투약간격에 따른 최종 집단관리 효과의 비교
서울대학교 의과대학 기생충학교실 및 동물병리연구소
徐丙高·趙昇烈·蔡庭一·洪性台

최종의 집단관리를 화학요법으로 실시할 때 우리는 최종검사가 단지 일시적으로 저하하기만을 기대하는 것은 아니다. 그러나 최종검사에서는 세균 감염이 통상의 특정이 배에에 감염을 일시적으로 저하시키던 다음에는 반드시 치료를 수준으로 해야 할 때이다. 따라서 정기적으로 집단 투약을 반복함으로써 수평적인 배에를 백제하고 재감염 자체의 감소를 기대한다. 그러므로 최종관리를 위한 집단투약에서는 치료제의 유효성을 물리적이고 만하지만 치료간격이 매우 중요한 요인이 될 것으로 생각되어 왔다. 그런데 이 문제에 대하여 명확한 단단한 탐구할 수 있는 자료는 매우 부족한 상태이다. 이 연구는 우리나라 동천부락민에게 2개월, 4개월, 6개월 및 12개월 간격으로 집단투약을 실시하였을 때 총정 양성률과 감염층체수에 어떻게 변화하는지를 관찰하기 목적으로 실시하였다.

1977년 4월부터 1980년 5월까지 3년동안 京畿道 華城郡 鄉南面의 9개 마을(주민수 100~140명)을 대상으로 하여 1개 마을에 대해서는 2개월 간격으로 1회, 6개 마을에 대해서는 6개월 간격으로 각각 5회, 나머지 2개 마을에 대해서는 12개월 및 9개월 간격으로 2회 치료하였다. 마지막이 2개 마을 중간에는 그 후 다시 4개월 간격으로 5회의 치료를 실시하였다. 사용약제는 pyrantel pamoate이었고 사용량은 10mg/kg, 대상자는 모든 주민이었고 남녀 노소의 구별없이 투약하였다. 대본 투약예마다 20~40명의 단단자가 각 마을에서 있었다. 집사는 매번 투약 직후에 2일간의 전례를 수첩한 다음 총정 및 총정내부 여부를 검사하였고, 검사에서 있어서는 감염층체수를 관찰하여 각 투약군 사이의 차이를 비교 검토하였다.

이 연구의 결과를 요약하면 다음과 같다.

1. 투약전 총정 및 총정양성율은 각 군별로 차이가 없었으며 각각 32.5~42.3% 및 33.8~46.2%의 범위에 있었다. 감염자의 평균 감염층체수는 1.6~4.2이다. 단 검사자에 대해서는 평균 0.61~1.42마리의 범위에 있었다.
2. 12개월이나 9개월 간격으로 치료를 받은 따른 함유도가 집단치료의 총정양성 및 감염층체수에 있어 차이가 없었다.
3. 총정양성율을 기준으로 하여 관찰한 때 6개월 간격 치료는 치료료의 1/2 수준으로 4개월 간격 치료는 약 1/3수준으로 2개월 간격 치료는 약 1/4수준으로 저하시켰다. 총정양성율 및 평균 감염층체수 집단치료가 반복함에 따라 더욱 저하하는 경향을 보이고 있었다.

위의 결과를 종합하여 본 바에 최종 집단관리의 한 방법으로서 집단투약을 실시한다면 3년 1회의 방법으로는 최종 재감염의 저하를 기대하기는 어렵고 1년에 최소한 2회 이상 반복하여야 함을 지적하고 있다.
故 双泉 李永春 博士 略歴

(1903—1980)

1903年 10月 16日 平安南道 龍岡郡 貴城面 大嶺里에서 出生
1929年 3月 세브란스醫學専門學校 卒業
1933年 3月부터 1935年 3月까지 세브란스醫學専門學校 講師
1935年 5月 醫學博士學位（日本 京都帝大）
1935年 4月부터 1945年 8月까지 全北 開井 熊本農場 慈惠診療所
1945年 9月 開井中央病院(現 케그레이브記念病院) 설립
1951年 7月 農村衛生研究所 設立
1952年 5月부터 1955年 4月까지 세브란스醫科大學 財団理事
1960年 11月부터 1961年 10月까지 第3代 大韓寄生蟲學會 會長
1964年 5月부터 1968年 8月까지 韓國寄生蟲撲滅協會 創立委員 及 會長
1977年 6月 名譽法學博士（延世大學校）

賞 励 受 賞

1952年 4月 保健社會部長官 保健功勞表彰
1957年 10月 第1回 全羅北道文化賞（自然科学）
1963年 8月 大韓民國 文化勳章
1980年 11月 25日 大韓民國 國民勳章 予공화장(추서)