단글론 항체를 이용하여 정제한 특소포자층 30 kDa 항원의 면역학적 특성

신대환*, 이영하, 노태진
충남대학교 의과대학 기생충학과

초록: 특소포자종(Toxoplasma gondii)은 다양한 항원을 가지고 있으며, 이들 항원의 분석은 세포주간 면역반응 및 특소포자층의 면역학적 진단방법의 연구에 매우 중요하다. 본 연구는 특소포자층의 여러 단백질중 대부분의 항체의 존재여부를 단글론 항체를 이용하여 분리한 후, 30 kDa 항원의 면역학적 특성을 조사하고 추출 항원과 비교 평가하였다. 특소포자층의 세포주 항원으로 면역화 마우스 비강세포와 마우스 Sp2/0-Ag14 골수주세포를 조합하여 30개의 단글론 항체를 Western blot으로 확인하였다. 이들 단글론 항체는 높은 특이성을 보였으며, IgG2b가 5개, IgG1이 2개, IgG2a가 1개였다. 간접형광항체법으로 측정된 위치를 관찰한 결과, 30 kDa 항원은 tachyzoite의 모양 세포막에 주로 분포하였다. 단글론 항체와 CNBr-activated Sepharose 4B를 coupling하여 만든 immunoaffinity chromatography를 이용하여 30 kDa 항원을 분리하였다. 분리한 30 kDa 항원으로 자극시킨 마우스 복강대세포의 NO2생산량은 추출과 추출 항원 세포군에 비해 유의하게 증가하였으나, 다식세포의 탐식능은 유의한 차이가 없었다. 또한 ELISA로 특소포자층 항원, 특소포자층 30 kDa 항원, 특소포자층 항원 세포군은 항원 세포군에 비해 민감도의 변화는 없었으나 특이성이 증가하였다. 이상으로 보아 특소포자층 30 kDa 항원은 감염 방어 면역 효과가 있었으며 진단에 이용해 특이성을 더 높일 수 있었다.

서 론

특소포자층(Toxoplasma gondii)은 우리 나라뿐만 아니라 전세계적으로 분포하고 있으며 사람을 비롯하여 포유동물, 조류에 이르기까지 수수 특이성이 극히 낮은 세포주 기생원충의 일종이다. 미국에서는 지역에 따라 50세 이상 인구의 10-67%에서 항체가 양성반응을 나타내며(Kasper, 1994). 우리나라에서도 전체 인구의 1.9-7.2%가 항체를 보유하고 있는 것으로 보고하였다(Choi, 1990). 최근에는 인위적 면역억제의 증가 및 후원성 면역결핍증(AIDS)의 확산으로 인하여 본질의 발생이 증가될 것으로 예상되므로 이에 대한 연구가 더욱 요구된다(Kasper, 1994).

본 연구는 1997년 1월 16일, 수경후 체내 1997년 2월 28일.
본 연구는 '93년도 한국과학단체에서 지원한 학술연구 조사(과학연구회계: 931-0700-024-2)의 지원에 의한 것임.
*책임 제자
이용하여 분리한 다음, 이 항체의 면역학적 반응을 위해 세포막 생성 면역반응 및 ELISA를 이용한 면역학적 전단에 이용 가능성을 충전의 초음파 추출 조합학과 비교 평가하였다.

재료 및 방법

1. 독소포자층 세포막 항체의 제조
 마우스 복강에 진열시켜 얻은 독소포자층 RH주를 Percoll(Sigma, specific gravity: 1.04)을 이용하여 쥐장리와 비교적 순수하게 모았으며, Makioka et al.(1989)의 방법에 따라 독소포자층 세포막 항체를 만들었다. 단백질 농도는 헌혈단백을 표준단백으로 Bradford법으로 측정하였고, 모든 조작은 4°C에서 시행하였다.

 독소포자층 세포막 단백질 항체생 성분이 높은 분획을 얻기 위하여 세포막 항체를 Sephadex G-100 펑칭(Sigma)에 통과시킨 다음 각 분획의 단백 질량을 측정하였다. 각 분획의 항체 얻기는 단백 자층 면역 현상을 부착시킨 ELISA plate를 이용하 여 Voller et al.(1976)의 방법에 따라 ELISA를 실 행하였다.

 또한 각 가치 다른 기생충 항체의 이용하여 독 소포자층 30 kDa 항체에 대한 단클론 항체의 특이 성을 검증하였다.

2. 독소포자층 30 kDa 항체에 대한 단클론 항체 생산
 BALB/c마우스에 독소포자층 세포막 항체를 통 럨의 Freund's incomplete adjuvant(Sigma)와 혼합 유화시킨 후, 마우스당 40 μg의 항체를 2주, 5주, 8주에 복강내 주사를 하여 면역하였다. 최종 면 역 후 immunodiffusion 및 ELISA로 혈청 IgG 항체가 측정되었으며, 세포막을 3일간 동일한 항체로 마우스 코리 경계에 주사하였다.

 면역 마우스의 비장의 무균적으로 적혈구를 분리하여 불용시킨 후, 비장세포를 Sp2/0-Ag14 굴수주 세포와 융합시켰다. 96-well culture plate(Nunc)에 0.1 ml씩 분주하여 37°C, 5% CO2에서 배양하였으며, 항체의 생산 여부는 ELISA로 검사하였다. 세포배양은 IMDM배지(ISCove's Modified Dulbecco's Medium, GibcoBRL)에 1 × HAT(Sigma), 10% fetal bovine serum, 1.5% antibiotic-antimycotics(GibcoBRL)를 첨가하여 사용하였다.

 간홍종, 패홍종, 스파프카, 유구낭마종 항체는 반응하지 않고 독소포자층 세포막 항체에만 강하게 반응하는 well만을 선택하여 무난히 희석한 다음 37°C, 5% CO2에서 배양하였으며, 각 well의 독소포자층 항체에 대한 항체생산 여부는 ELISA로 검사하였다. 또한 독소포자층 30 kDa 항

 원에 대한 단클론 항체 생산은 Towbin et al.(1979)의 방법에 따라 Western blot으로 검사하였다. 전기영동이 끝난 검출 nitrocellulose 증이 전이시킨 후 3% skim milk/PBS로 2시간 반응시킨 다음, 각각의 배양 상층액을 반응시켰다. 세척 후 alkaline phosphatase conjugated anti-mouse IgG whole molecule(Sigma)를 반응시킨 다음 alkaline phosphatase buffer(ρH 7.5)에 nitro blue tetrazolium(Sigma)와 bromochloro-indoly phosphate(Sigma)를 첨가하여 만든 기질 응용액을 넣어 발색시켰다.

3. 독소포자층 30 kDa 항체의 분리
 1) 단클론 항체의 정제 및 30 kDa 항체의 분리: HiTrap Protein G(Pharmacia Biotech)를 이용하여 단클론 항체에서 독이 IgG 항체를 정제한 다음, Kasper et al.(1983)의 방법에 따라 immunoaffinity chromatography법으로 30 kDa 항체를 분리하였다. CNBr-activated Sepharose 4B(Pharmacia)를 1N HCl로 활성화시킨 후, 정제된 단클론 항체 5 mg을 4°C에서 2시간 반응시켰다. 독소포자층 세포막 항체를 시간당 5 ml의 속도로 column에 통과시킨 후 0.5% cholic acid가 포함된 0.1 M diethylamine(ρH 11.5)으로 응용하였다. 응용된 항체는 0.05% deoxycholic acid가 포함된 PBS로 두어 다음 10% SDS 샘을 사용하여 전기영동 후, silver stain(Wako)하였다.

 2) 단세포군 항체의 isotype: Mouse monoclonal antibody isotyping kit(Sigma ISO-1)를 이용하여 단클론 항체의 isotype를 결정하였다. Isotyping strip를 단클론 세포 배양액과 반응시킨 후, 1% BSA와 0.05% Tween 20이 함유된 PBS로 세척한 다음 biotin labelled anti-mouse immunoglobulin을 반응시켰다. 세척 후 extravidin-peroxidase로 반응시킨 다음 기질을 첨가하여 발색시켰다.

4. 간접형광함계법을 이용한 30 kDa 항체의 증산

 독소포자층의 tachyzoites를 1 × 10⁵/ml의 농도로 만든 다음 slide glass에 0.2 ml를 면역한 후 실온에서 진조시켰다. 여기에 만든 항체를 37°C에서 2시간 반응시킨 후 1% Evans blue를 함유한 FITC-conjugated anti-mouse immunoglo

 bulin(Sigma)을 37°C에서 1시간 반응시키고 형광현미경(Reichert Jung)으로 관찰하였다.

5. 독소포자층 30 kDa 항체로 자극시킨 마우스 복장 대식세포의 세포 독성
 1) 복장 대식세포의 분리 및 배양: 정상 마우스와 9% proteose peptone(1 ml/mouse), 독소포
자충 조합원(100 μg/mouse) 및 독소포자충 30 kDa 항원(100 μg/ml)으로 4일 동안 자극한 마우스에서 복강대식세포를 다음과 같이 분리하였다. 10% fetal bovine serum이 포함된 RPMI 1640으로 복강세포의 수를 5 × 10^6/ml로 조정한 다음 16-well chamber slide(Nunc)의 각 well에 100 μl씩 분주 후 37°C, 5% CO₂에서 2시간 배양하였고, 부착되지 않은 복강세포는 37°C의 HBSS로 제거한 후 동일한 배지로 다시 3-4일 배양하여 대식세포 단세포층을 만들었다.

2) Nitrite(NO₂⁻) 생성량 측정: 대식세포에서 분비되는 NO₂⁻의 생산량은 standard Griess reaction법(Vincendeau and Daulouede, 1991)으로 측정하였다. 복강대식세포 단세포층에 새로운 배지를 110 μl씩 처리한 다음 24시간 배양하고 각 well의 배양 상충액 100 μl을 채취하였다. 상충액에 Griess reagent 600 μl을 혼합 후 약 30 분 반응시킨 다음 파장을 540 nm에서 흡광도를 측정하였다. 표준곡선은 NaN₃로 만들었으며, NO₂⁻ 생산량은 μM/5 × 10⁵ cells/24 hrs으로 표시하였다.

3) 복강 대식세포의 탐식능: 복강 대식세포 단세포층에 5 × 10⁶개/ml의 복강대식세포 햄스테이트를 각 well 당 100 μl씩 분주 후 2시간 배양한 다음, 동일 배양액으로 대식세포 주위에 남아있는 tachyzoite를 세척하였다. 동일 배양액을 가하여 18시간 더 배양한 다음 각 well을 100% methanol로 고정 후 Giemsa 염색하여 평판하려 경으로 관찰하였다. 대식세포의 탐식능은 세포내 독소포자충의 변화(FI: fold increase)로 나타났다(Langerman et al., 1992).

6. 독소포자충 30 kDa 항원을 이용한 검열 마우스 혈청의 진단

독소포자충 초음파 추출 후 30분에 독소포자충 30 kDa 항원을 각각 ELISA plate에 부착시킨 후 경장마우스 혈청과 독소포자충 Beverley주에 감염된 4주 이상된 마우스 혈청을 대상으로 ELISA를 시행하여 부착 항원에 따른 진단의 특이성 및 민감성을 평가하였다.

7. 통계 처리

실험 성적은 평균 ± 표준편차(M ± S.D.)로 표시하였고 자료분석은 t-Test를 하였으며 유의 수준은 p < 0.05로 하였다.

실험성적

1. 단클론 항체의 특성 관찰

면역시킨 마우스 비강세포와 Sp2/0-Ag14 골수 종 세포 융합 효율은 약 83%였으며, 융합 세포주 독소포자충 세포막 항원에 대해 흡광도 1.5 이상인 87개 well의 배양상충액을 간접형, 간접형, 스파르간속 및 유구상비막 항원과 반응시킨 결과 융합세포의 대부분은 독소포자충 항원에 대한 특이 항체를 생성하였다(Table 1).

Table 1. Results of IgG antibody titers against 5 different parasitic antigens in supernatants of hybridomas by enzyme-linked immunosorbent assay

<table>
<thead>
<tr>
<th>Parasitic antigens</th>
<th>Absorbance value at 492 nm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxoplasma membrane</td>
<td>1.772 ± 0.258</td>
</tr>
<tr>
<td>Clonorchis sinensis</td>
<td>0.309 ± 0.087</td>
</tr>
<tr>
<td>Paragonimus westermani</td>
<td>0.330 ± 0.120</td>
</tr>
<tr>
<td>Sparganum</td>
<td>0.219 ± 0.044</td>
</tr>
<tr>
<td>Cysticercus celluloseae</td>
<td>0.214 ± 0.046</td>
</tr>
</tbody>
</table>

*Mean ± standard deviation of 87 hybridomas secreting strong IgG antibody against Toxoplasma membrane antigen.
Fig. 1A. Western blot patterns of *Toxoplasma* crude antigen reacted with various kinds of antibodies. ① *Toxoplasma* antigens reacted with sera from mice infected with Beverley strain of *T. gondii*. ② *Toxoplasma* antigens reacted with sera from mice immunized with *Toxoplasma* membrane antigen. ③ *Toxoplasma* antigens reacted with culture supernatant secreting *Toxoplasma* 30 kDa monoclonal antibody. ④ *Toxoplasma* antigens reacted with ascites secreting 30 kDa monoclonal antibody. Numbers represent molecular weight standards.

Fig. 1B. Silver stain pattern of SDS-polyacrylamide gel applied to the antigens eluted by immunoaffinity chromatography. ① Molecular weight marker. ②, ③ and ④ represent antigenic fractions eluted by immunoaffinity chromatography, respectively. Number represent molecular weight standard: α-lactoalbumin (14,200), trypsin inhibitor (20,100), carbonic anhydrase (29,000), ovalum (45,000), albumin (66,000).

투여군의 NO$_2$ 생산량은 서로 유의한 차이는 없었는데(그림 3).

2) 북감대식세포의 탐식능: 정상마우스 북감대식세포에 투여자중의 tachyzoite를 접시 후 2시간 배양시 평균 72%의 대식세포가 투여자중에 감염되었으며, 감염되지 않은 총체를 제거한 후 다시 18시간 배양시 평균 73%가 감염되어 1.01 FI를 나타냈다. 9% protease 투여군은 0.78 FI, 투여자중 조항원 투여군은 0.87 FI, 투여자중 30 kDa 항원 투여군은 0.84 FI를 나타내 정상 마우스에 비해 증가된 탐식능을 보였으나(p < 0.05), 각각의 투여군 상호간에는 유의한 차이가 없었다(Table 2).

4. 투여자중 30 kDa 항원을 이용한 강염 마우스 혈청의 진단

투여자중 조항원을 이용하여 IgG 항체가 증징한 결과, 정상 마우스 혈청의 훼황도는 0.336 ± 0.102(0.214~0.657)였으며, 투여자중 간염 마우스 혈청의 훼황도는 1.178 ± 0.293(0.486~1.786)였다. 정상 마우스 혈청의 평균 훼황도는 표준 편차를 2배하여 낮은 훼황도, 즉 위음성을 제거할 수 있는 훼황도 0.540 이상으로 정립하였다. 투여자중 조항원은 ELISA를 시행시 정상 마우스 혈청의 85.7%가 음성 범위에 포함되었으며, 투여자중 간염 혈청의 92.3%가 양성 범위에 포함되었다. 그럼에도 불구하고 투여자중 30 kDa 항원
Fig. 2. Distribution of *Toxoplasma* 30 kDa antigen reacted with monoclonal antibody stained by indirect immunofluorescent antibody technique. **A**, RH strain of *T. gondii* reacted with normal mouse serum, there was no immunofluorescence; **B**, RH strain of *T. gondii* reacted with immune mouse serum as a positive control. *Toxoplasma* surface showed fluorescent entirely; **C**, RH strain of *T. gondii* reacted with *Toxoplasma* 30 kDa monoclonal antibody showed strong positive reaction on the surface membrane.

Fig. 3. Amounts of NO₂ production by peritoneal macrophages from normal and activator-inoculated mice. Data shown are the mean ± standard deviation of 5 cases.

* ***p < 0.05 compared to the normal mice.

로 ELISA 시행시 감염 마우스 혈청의 혈청도는 0.486-1.343 범위로 92.3%에서 양성 반응에 포함되어 조항원 투여시와 동일한 양상을 보이며 내장수성의 차이는 없었다(Fig. 4).

고 찰

폭소포자중 항원은 크게 세포막 항원과 분비 항원으로 분류되며, 이중 항원의 분석은 면역학 분야 특히 세포막세포 면역반응의 연구 및 폭소포자중의 면역학적 전단법 연구에 매우 중요하다. 지금까 지 단클론 항체를 이용하여 규명한 주요 폭소포자 중 세포막 항원은 분자량 43, 35, 30-31, 27, 21-22, 14 kDa 등이 보고되었으며(Handman et al., 1980; Kasper et al., 1983; Gross et al., 1991), 이중 30 kDa 항원은 세포 전체 단백질의 약 3-5%로, 비활성 세포에서는 30,000-35,000 dalton의 분자량을, 비활성 세포에서는 27,000-28,000 dalton의 분자량을 갖는다(Kasper and Khan, 1993). 본 실험에서는 투입한 세포막 단백의 약 6% 중 세포 전체 단백의 약 0.9%가 30 kDa 항원으로 분리되어 Kasper et al.(1983)보다 낮은 확득율을 보였다. 이는 30 kDa 항원 분리시 세포 전체 단백을 모두 사용하지 않고 먼저 세포막 항원을 분리한 후 30 kDa 항원을 경제하였기 때문에 이 과정에서 특히 항원의 손실이 있는 것으로 생각된다. 지금까지 보고된 30 kDa 항원은 여려가지가
Table 2. Toxoplasmoidal activity of peritoneal macrophages from normal and activator-inoculated mice

<table>
<thead>
<tr>
<th>Activators</th>
<th>% Macrophages infected<sup>a</sup></th>
<th>Fold increase (FI)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 hours</td>
<td>18 hours</td>
</tr>
<tr>
<td>Medium</td>
<td>72 ± 10</td>
<td>73 ± 12</td>
</tr>
<tr>
<td>9% proteose peptone</td>
<td>59 ± 9</td>
<td>46 ± 8</td>
</tr>
<tr>
<td>Toxoplasma crude antigen</td>
<td>63 ± 8</td>
<td>55 ± 6</td>
</tr>
<tr>
<td>Toxoplasma 30 kDa antigen</td>
<td>61 ± 8</td>
<td>51 ± 8</td>
</tr>
</tbody>
</table>

^a Mean ± standard deviation of 5 cases.

% Macrophages infected = \(\frac{\text{No. of macrophages infected with } T. \ gondii}{100 \text{ macrophages}} \times 100 \)

mean No. of \(T. \ gondii \) per 100 macrophages after 18 hrs of incubation

^b\(\text{FI} = \frac{\text{mean No. of } T. \ gondii \text{ per 100 macrophages after 2 hrs of incubation}}{\text{mean No. of } T. \ gondii \text{ per 100 macrophages after 18 hrs of incubation}} \)

^cp < 0.05 compared to the normal mice.

Fig. 4. Distribution of absorbance values of the sera from normal mice and Toxoplasma infected mice measured by ELISA. Sera from normal mice were reacted with Toxoplasma crude antigen (Normal-crude) or with Toxoplasma 30 kDa antigen (Normal-30 kDa). Sera from Toxoplasma-infected mice were reacted with Toxoplasma crude antigen (Infected-crude) or reacted with 30 kDa antigen (Infected-30 kDa). Each dot means one case, and each bar means mean ± standard deviation of each group.

이름, 이들의 사이에는 약간의 구조적, 연역학적 차이가 있는 것으로 되어 있다(Burg et al., 1989; Bonhomme et al., 1994). 본 실험에서 독소포자증 이외의 항원으로 항체의 특이성을 조사한 결과 몇 개 well에서는 간헐, 종합, 유중단증 항원에 대해 높은 중합도를 나타냈다. 이는 독소포자증 항원의 일부가 이들 항원과 공통 항원을 가지고 있거나, 항체세포의 강기 배양으로 인한 배양 성장액의 변성 때문으로 생각되며, 앞으로 보다 많은 종류의 다른 항원들은 확보하여 교차반응 여부를 확인하는 것이 필요하다. 또한 면역조직 현미경법을 이용하여 30 kDa 항원의 분포를 조사한 결과 tachyzoite의 세포막, parasitophorous vacuole 및 rhoptry에 주로 분포한다(Makioka et al., 1989; Boulanger et al., 1991). 본 실험에서는 간염증공항체법으로 조사한 결과 30 kDa 항원은 종체의 세포질에는 미약하게 반응하고 세포막에 주로 분포하며, 위의 보고와 동일한 결과를 보였다.

독소포자증 감염시 세포내개성 면역반응을 보면 T 리포스에 독소포자증 30 kDa 항원 전처시 세포 특성이 증가하였으며(Khan et al., 1988), 이 항원이 대식세포를 활성화시켜 종체를 맴단시하는데 중요한 역할을 한다고 하였다(Makioka and Kobayashi, 1991). 본 실험에서 독소포자증 30 kDa 항원으로 자극시킨 부갑대식세포는 정상마우스 대식세포에 비하여 NO\(_2\) 및 탄식산이 유의하게 증가하였다. 이는 30 kDa 항원이 독소포자증의 감염 방어면역에서 중요함을 나타내는 것으로, Gordard et al.(1994)은 30 kDa 항원이 백신으로서의 가능성이 있다고 하였다. 그러나만 30 kDa 항원 부여군의 NO\(_2\) 생산량은 조합항 주여군보다 유의하게 증가하였으나, 탄식산은 서로 유의한 차이가 없었다. 이는 NO\(_2\) 생산 기전 및 탄식산을 나타내는 기전이 완전히 일치하지 않음을 나타내는 것으로 이에 대한 연구가 앞으로 요구된다.

독소포자증 감염시 여러 가지 면역학적 방법이 본질의 진단에 중요한 수단으로 인정되고 있으며, 그중 ELISA는 대표적인 방법으로 나타내며 경제적이어서 많은 보고자들이 진단에 이용하여 왔다. 그렇지만 대부분은 초음과 추출 항원을 사용하여 항체

Abstract

Immunological properties of the 30 kDa antigen of *Toxoplasma gondii*

Dae-Whan SHIN*, Young-Ha LEE and Tae-Jin RHO

Department of Parasitology, College of Medicine Chungnam National University Taejon, Korea

The molecular weight 30 kDa membrane protein of *Toxoplasma gondii* (Toxoplasma 30 kDa) apparently conserved in most strains of *T. gondii* and sera of infected hosts. The present study aimed to elucidate Toxoplasma 30 kDa as a useful diagnostic antigen for serodiagnosis of toxoplasmosis by ELISA and for induction of protective immunity. Murine spleen cells immunized with the membrane antigen of *T. gondii* were fused with mouse Sp2/0-Ag14 myeloma cells. Out of 8 clones selected, five were IgG2b, the others belonged to IgG1 and IgG2a. The 30 kDa antigen was distributed mainly on the surface membrane of tachyzoites by indirect fluorescence method. Murine peritoneal macrophages which were activated by 30 kDa antigen produced more amounts of NO3 compared with crude antigen-treated group, however there were no significant differences in toxoplamidal activity between the two groups. Higher specificity of Toxoplasma 30 kDa antigen was recognized for serodiagnosis of toxoplasmosis than the crude antigen. From these results, Toxoplasma 30 kDa antigen enhances the cytotoxic effect of macrophages as well as a more reliable means for the serodiagnosis of toxoplasmosis by ELISA.

Key words: Toxoplasma gondii, 30 kDa antigen (p30), mouse, serodiagnosis, macrophage, cytotoxicity.

*Corresponding author